The Isolated Voltage Sensing Domain of the Shaker Potassium Channel forms a Cation Channel
نویسندگان
چکیده
منابع مشابه
The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel
Domains in macromolecular complexes are often considered structurally and functionally conserved while energetically coupled to each other. In the modular voltage-gated ion channels the central ion-conducting pore is surrounded by four voltage sensing domains (VSDs). Here, the energetic coupling is mediated by interactions between the S4-S5 linker, covalently linking the domains, and the proxim...
متن کاملThe voltage-sensing domain of a phosphatase gates the pore of a potassium channel
The modular architecture of voltage-gated K(+) (Kv) channels suggests that they resulted from the fusion of a voltage-sensing domain (VSD) to a pore module. Here, we show that the VSD of Ciona intestinalis phosphatase (Ci-VSP) fused to the viral channel Kcv creates Kv(Synth1), a functional voltage-gated, outwardly rectifying K(+) channel. Kv(Synth1) displays the summed features of its individua...
متن کاملAgitoxin Footprinting the Shaker Potassium Channel Pore
In voltage-dependent K+ channels, each of the four identical subunits contributes one pore loop to the central ion selectivity unit at the interface between the subunits. The pore loop is also the target for scorpion venom peptide inhibitors. These inhibitors bind at the pore entryway between the four subunits and can assume any one of four orientations. The orientations become distinguishable ...
متن کاملDown-state model of the voltage-sensing domain of a potassium channel.
Voltage-sensing domains (VSDs) of voltage-gated potassium (Kv) channels undergo a series of conformational changes upon membrane depolarization, from a down state when the channel is at rest to an up state, all of which lead to the opening of the channel pore. The crystal structures reported to date reveal the pore in an open state and the VSDs in an up state. To gain insights into the structur...
متن کاملVoltage-Sensing Arginines in a Potassium Channel Permeate and Occlude Cation-Selective Pores
Voltage-gated ion channels sense voltage by shuttling arginine residues located in the S4 segment across the membrane electric field. The molecular pathway for this arginine permeation is not understood, nor is the filtering mechanism that permits passage of charged arginines but excludes solution ions. We find that substituting the first S4 arginine with smaller amino acids opens a high-conduc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2017
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2016.11.1361